Advanced Module Systems

(A Guide for the Perplexed)

Benjamin C. Pierce
University of Pennsylvania

Joint work with
Robert Harper (CMU)

Modules: the old Is new again

1960s — 70s modules key technology for

“programming in the large”

Modules: the old Is new again

1960s — 70s modules key technology for

“programming in the large”

80s — early 90s objects and classes key technology

for “programming”

Modules: the old Is new again

1960s — 70s modules key technology for

“programming in the large”

80s — early 90s objects and classes key technology
for “programming” (incorporating

many features of modules)

Modules: the old Is new again

1960s — 70s

80s — early 90s

mid-90s — OO

modules key technology for

“programming in the large”

objects and classes key technology
for “programming” (incorporating

many features of modules)

components key technology

for “software composition”

Modules: the old Is new again

1960s — 70s

80s — early 90s

mid-90s — OO

modules key technology for

“programming in the large”

objects and classes key technology
for “programming” (incorporating

many features of modules)

components key technology
for “software composition”

(~ modules)

A puzzle

¢ Recent academic languages (SML, OCaml,
MzScheme, etc.) offer complex module features
[functors, sharing specifications, H-O / applicative /
generative...]

A puzzle

¢ Recent academic languages (SML, OCaml,
MzScheme, etc.) offer complex module features
[functors, sharing specifications, H-O / applicative /
generative...], plus claims that their features are
needed to build large software systems.

A puzzle

¢ Recent academic languages (SML, OCaml,
MzScheme, etc.) offer complex module features
[functors, sharing specifications, H-O / applicative /
generative...], plus claims that their features are
needed to build large software systems.

¢ Most production languages (C, C++, Java, etc.)
provide very simple module systems...

A puzzle

¢ Recent academic languages (SML, OCaml,
MzScheme, etc.) offer complex module features
[functors, sharing specifications, H-O / applicative /
generative...], plus claims that their features are
needed to build large software systems.

¢ Most production languages (C, C++, Java, etc.)
provide very simple module systems... and are
believed to “work pretty well” for building large
software systems.

A puzzle

¢ Recent academic languages (SML, OCaml,
MzScheme, etc.) offer complex module features
[functors, sharing specifications, H-O / applicative /
generative...], plus claims that their features are
needed to build large software systems.

¢ Most production languages (C, C++, Java, etc.)
provide very simple module systems... and are
believed to “work pretty well” for building large
software systems.

So: Who is “right”? Or: better question...

What pragmatic issues motivate the features of
advanced module systems?

When do we really need which features?

An outsider’s tutorial
on module systems

What pragmatic issues motivate the features of
advanced module systems?

When do we really need which features?

An outsider’s tutorial
on module systems

What pragmatic issues motivate the features of
advanced module systems?

When do we really need which features?

Focus on one particular set of issues:

¢ specific vs. generic references to external modules

¢ different ways of managing coherence: sharing by
parameterization vs. sharing by specification

Some disclaimers

¢ Very complex and interconnected set of issues

¢ Many other (equally tricky) issues omitted

¢ Difficult to talk clearly about > T module system at
a time!

Much of the material is familiar; the goal iIs to organize

the “story” so that the choice-points in the design
space are as clear as possible.

Lifecycle of a program

(1) development (2) linking (3) execution

A
f= xMt.x+1
g = XAnt.x+2

B
h = xAnt. A.f(x+3) i = x:at. A.g(x)+4

D

C.i(B.h(5))

(including coding, typechecking, compilation)

Lifecycle of a program

(1) development (2) linking (3) execution

A
f= xnt.x+1

Code... 0= XANLX+2

B C

h = xant. A.f(x+3) i = x:nt. A.g(x)+4

| D ...grouped into
C.i(B.h(5)) modules

Lifecycle of a program

(1) development (2) linking (3) execution

f= xnt.x+1
g = XANt.x+2

A

B

h= xint. >.§@

| = XNt >.©Ax6

C

Lifecycle of a program

(1) development (2) linking (3) execution

g= %L:ﬁv?m

Lifecycle of a program

(1) development (2) linking (3) execution

-

h= xant. o?V

Lifecycle of a program

(1) development (2) linking (3) execution

h= xant. Q+V

(In practice, the phases are not so neatly separated...)

Interfaces

f= xMtx+1
g = XNnt.x+2

— — —

A

| f 1 int->int |
| 9 - int->int |

h = xant. A.f(x+3)

. BI'

h : int->int _

| int->Int

. _Illllﬁ\l_lll

D
C.i(B.h(5))

Separate development

g — - — — = ._)
Al
|2 int->int |
19: int->int |
- — — — U
- X é
B
h = xant. A.f(x+3)
. BI' - cl
. . — O—
| h : int->int | | - Iint->Int
: R A==

D
C.i(B.h(5))

“True” separate development requires that all
dependencies between modules be mediated by explicit
Interfaces. Modules can then be recompiled in any
order.

When modules do depend on each other directly (or,
equivalently, when module interfaces are not explicit
but are “read off” by the compiler), this dependency
Induces an ordering on compilation of modules.
Changes to modules deep Iin this ordering will cause
“cascading recompilations.”

Hiding Representations

f= xMt.x+1
g = XAnt.x+2

A

_|||||
| f+ int->int _

Hiding Representations

A a Al '
f= xnt.x+1 | £+ int->int _
g= NNt X+2 _ g Int->int _

A a Al '
f= xint.x+1 | £ int->X |
g = XNnt.x+2 | 9 X->int |

Hiding Representations

Y
A Al
f= xMtx+1 | £+ int->int _
g = XAnt.x+2 _ g : Int->Int _
— = — — 1
A Al
f= xtx+1 Lt int->X |
g = xNnt.x+2 | 9 X->Int |
Al T A
Al
X = int | YR | existential
f= x:nt.x+1 - Int- -
g = XNnt.x+2 | g: X->int | types
||||| J

Hiding Representations

All Al
X = int | X Type _
f= x:ht.x+1 E _E-v.x |
g = XANnt.x+2 | g: X->int |

B
h = xant. Af(x+3) i

|||||]
| _
| h:int->A _

C.i(B.h(5))

Coherence

Tha%@ f\ -

C.i(B.h(5))

When typechecking D, we need to know that the
module A mentioned In B’s interface and the A

mentioned in C’s interface are the same (or, at least,
that they have the same type component X).

Coherence

Th;ﬁ%@ f \ -

C.i(B.h(5))

When typechecking D, we need to know that the
module A mentioned In B’s interface and the A

mentioned in C’s interface are the same (or, at least,
that they have the same type component X).

Here, this Is immediate, since both references to A are
specific (l.e., they are free vars with the same name)

Generic references

So far, all external references to modules have this
specific character. In particular, when an interface
refers to another module, it should be interpreted as
“the module with this name and interface (whose
precise identity will be known at link time).”

This Is a key property of simple module systems.

More advanced module systems also support generic
references to external modules: we can talk about
“a module with such-and-such interface.”

However...

Incoherence

I”PIII/_.. P__XII_

B.0 (®)

If the module nhame A mentioned in BI and the A
mentioned in CI might refer to different modules (with
different implementations of X), then there is no reason
why the body of D should typecheck!

Forms of Generic References

Various possible realizations of generic references:

¢ functors (parametric modules)
¢ multiple class loaders

¢ etc.

Multiple class loaders

Remember Vijay Saraswat’s tricky Java class-loader
bug? [“Java Is not Typesafe”, Types posting, 1997]

Essentially, this bug arose from the fact that multiple
class loaders in Java give you “a-ness” (generic
references to classes) in a language that only
understands “the-ness” (specific names for classes).

Furthermore, Sun’s fix [Liang&Brachal essentially
amounted to introducing (dynamically checked) sharing
specifications in the run-time system!

Functors

In languages with ML-style modules, generic references
come from functors.

These arise In programming in several ways:

. Fully functorized programming style
2. Multiple implementations of interfaces

3. Generic libraries

However, finding “necessary” examples of functorization
IS not that easy.

“Fully functorized” style

An early idea in the ML community was that all

specific inter-module references should be replaced by
generic ones.

Experience showed, though, that the fully functorized
style is far too painful to use in practice:

Making all references generic leads to many
spurious coherence issues.

Multiple implementations

Proposal:

Functors arise we want to provide multiple
Implementations of the same signature: client
modules should be parameterized so that we can
choose between these implementations at link time.

Example:

The Unison file synchronizer has both a textual and
a graphical user interface, both matching the
signature UI. The main program is parameterized on
the user interface module.

Multiple iImplementations

Proposal:

Functors arise whenever we want to implement the
same signature more than once: client modules
should be parameterized so that we can link them
with alternate implementations.

Not convincing:

Other languages (C, Java, ...) accomplish this by
using a direct reference from the main to the Ul
module and adjusting the “linking context” (search
paths, etc.) so that the appropriate implementation
IS supplied at link time.

Multiple implementations, contd.

Ugh: path hacks!

Much nicer to express linking in a real programming
language.

Multiple implementations, contd.

Ugh: path hacks!

Much nicer to express linking in a real programming
language.

Counter:

Agreed. But functors are not the only possible “nice
inking language.” Why not invent a real language
with primitives for manipulating linking contexts In
the style of search paths?

(the SML/NJ Compilation Manager goes some distance
In this direction...)

Libraries

Proposal:

Functors can arise when a library module needs to
refer to a client module (because the library
Implementor doesn’t know what name will be chosen

for the client module).

Convincing?

Libraries

Proposal:

Functors can arise when a library module needs to
refer to a client module (because the library
Implementor doesn’t know what name will be chosen

for the client module).

Convincing?

Somewhat, but perhaps one could also address this
sort of application with “path hacks” or a more

sophisticated linking language

Multiple simultaneous
Implementations

Refined proposal:

Functors are needed when we want to implement
the same signature multiple times and use more
than one of the implementations in the same run of

a program.

Multiple simultaneous
Implementations

Refined proposal:

Functors are needed when we want to implement
the same signature multiple times and use more
than one of the implementations in the same run of

a program.

Convincing.

E.g.. Set module.

Origins of coherence Issues

Challenge: Find natural (better yet, common) examples
of unavoidable coherence problems.

I. must involve “diamond import” or similar pattern of
dependency, with B and C parameterized on A, and
D on B and C

2. A, B, and C must have multiple implementations

3. must involve using two (or more) of each
Implementation in the same run of the program

One example

This functor [from the CMU PsiCo project] computes
a delaunay triangulation of a planar structure by
projecting it onto a sphere and computing a voronoi
diagram there...

functor Ruppert
(structure Geometry2D : GEOMETRY
structure Geometry3D : GEOMETRY
sharing type Geometry2D.Number.t = Geometry3D.Number.t

I. Diamond import
Number

Geometry2D Geometry3D

Ruppert

The 2-D and 3-D geometries passed to Ruppert
must share a common representation of numbers
used for coordinates.

2. Multiple implementations of GEOMETRY and NUMBER.

3. Multiple simultaneously active instances of GEOMETRY
(obviously) and NUMBER (e.g., for multi-precision
calculations[Right??]) In a single link-context.

Another example

SML/NJ compiler back end:

I. Code generator is parameterized on machine
description. Machine description itself is broken into
several parts, depending on common |low-level
substructures, which must be coherent

2. machine descriptions for many architectures

3. multiple simultaneous machine descriptions present
during cross-compilation

Dealing with coherence

To treat such examples (without resorting to dynamic
checks), we need deal with the issue of coherence.

Possible approaches:

¢ dodge the issue by using objects instead of modules

¢ sharing by parameterization (a.k.a. “sharing by
construction,” or “Pebble-style” sharing)
¢ parameterization over modules
¢ parameterization over types

¢ sharing by specification, using sharing specifications
or where-clauses

Objects

Often, parameterization over modules can be replaced
by parameterization over objects (which do not export
abstract types, and so do not raise coherence issues).

If

l. a module provides just one abstract type X, and

2. the types of all the operations have the form
X—TorT— X (with X not in T),

then we can re-organize the module as an object.

Example

Recall our module A:

A=1[X=int AT = [X :: Type
f = Ax:int.x+1 f : int->X
g = Ax:int.x+2] g : X->int]
Here are A and AI in Java:
class A implements AI {
int rep; interface AI {
A(int x) { rep = x+1; } A (int x);

int g () { return rep+4; }} int g O; }

Representation Hiding, O-O style

Roughly:

¢ Operations taking the hidden type as parameter
become methods with one less parameter: the
parameter of hidden type is represented by the
“Implicit parameter” self oOr this.

¢ Operations returning the hidden type become
constructors of the class.

Limitation: No simultaneous
abstractions

Example:
AbsynI = [Ty :: Type,
Tm :: Type,

lam : Ty -> (Tm -> Tm) -> Tm,
app : Tm -> Tm -> Tm,
cee]

Translating this into OO style Is awkward.

Limitation: Binary methods

Binary operations do not fit well with the
object-oriented programming style.

¢ Each object carries its own representation (and
associated operations)

¢ “Deep” binary operations—ones that require
privileged access to the concrete representations of
two different abstract values—do not fit this model.

(N.b.: the PsiCo and SML/NJ examples from a few
slides ago were not “objectifiable” for this reason.)

Digression:
Binary Methods and Classes

But... O-O languages like Java do support binary
methods, don’'t they?

Digression:
Binary Methods and Classes

But... O-O languages like Java do support binary
methods, don’'t they?

Yes. In classes, not interfaces.

Relies on the fact that all the instances of a class (and
Its subclasses) carry the same fields. So If a parameter
belongs to the same class as the current object, then
It must have (at least) the same fields.

What Java does not support is generic references to
classes.

Sharing by parameterization

ldea: Parameterize signatures wrt. all references to
external modules (i.e., change external references from
free to A-bound names)

Sharing by parameterization

A = [X = int, f = ..., g = ...]
AT = [X :: Type, £f : int->X, g : X->int]
B = AA:AI. [h = Ax:int. A.f(x+3)]

BI = [A:ATI] -> [h : int -> A.X]

C = AA:AT. [i = Ax:A.X. A.g(x)+4]

CI = [A:AT] > [h : A.X —> int]

D = AA:AI. AB:BI(A). AC:CI(A).

[C.i(B.h(5))]

Sharing by specification

ldea: Augment signatures with substructures
corresponding to all external names

Sharing by specification

AT

BI

CI

[X = int,
[X :: Type,

[A:AT = A,
[A : AT,

[A:AT = A,
[A : AT,

h
h

e g = ...]
int->X, g : X->int]

Ax:int. A.f(x+3)]
int -> A.X]

Ax:A.X. A.g(x)+4]
A.X -> int]

AB:BI. AC:CI with A=B.A.

[C.i(B.h(5))]

Sharing by specification

Abstract substructures in signatures function as
placeholders for names of specific modules in future
sharing specifications.

Comparisons

Key point. The augmented signatures appearing in the
sharing-by-specification style are signatures! (A
parameterized signature is not a signature: it is a
function from modules to signatures.)

“Post-hoc parameterization” as needed

Using sharing-by-parameterization, the only way to be
“parametric enough” Is to parameterize all external
references in case they need to be shared later.

Difficulties

Two forms of sharing by parameterization:

¢ Parameterization over external modules (as above)

Observation [MacQueen]: As dependency
hierarchies become deeper, interfaces
parameterized on modules scale badly.

¢ Parameterization just over the abstract types from
external modules (e.g., Haskell)

Works.

Parameterization over modules:
Flat version

M1 : I1 = [T :: Type, £ : ...]

M2 : I2 = [T :: Type, £ : ...M1.T...]
M3 : I3 = [T :: Type, £ : ...M2.T...]
M4 : 14 = [T :: Type, £ : ...M3.T...]

etc.

Parameterized version

Signatures must be “maximally parameterized,” anticipating
arbitrary patterns of sharing.

I1 = [T :: Type, £ : ...]
I2 = AM1:I1. [T :: Type, £ : ...M1.T...]
I3 = AM1:I1. AM2:I2(M1).

[T :: Type, £ : ...M2.T...]

14

AM1:I1. AM2:I2(M1). AM3:I3(M1) (M2).
[T :: Type, £ : ...M3.T...]

Parameterized version

Signatures must be “maximally parameterized,” anticipating
arbitrary patterns of sharing.

I1 = [T :: Type, £ : ...]
I2 = AM1:I1. [T :: Type, £ : ...M1.T...]
I3 = AM1:I1. AM2:I2(M1).

[T :: Type, £ : ...M2.T...]

14

AM1:I1. AM2:I2(M1). AM3:I3(M1) (M2).
[T :: Type, £ : ...M3.T...]

Header information grows as square of dependency depth.

The final nall In the coffin

Now suppose we decide to change M1 so that its interface
depends on a new module MO...

I0 = [T :: Type, £ : ...]
I1 = AMO:IO0. [T :: Type, £ : ...MO.T...]
I2 = AMO:IO0. AM1:I1(MO).
[T :: Type, £ : ...M1.T...]
I3 = AMO:IO. AM1:I1(MO). AM3:I2(MO)(M1).
[T :: Type, £ : ...M2.T...]

I4 = AMO:IO0. AM1:I1(MO).
AM2:I2(MO) (M1) . AM3:I3(MO) (M1) (M2).
[T :: Type, £ : ...M3.T...]

Requires (dependency depth)? changes to existing code!

Parameterization over types

Instead of abstracting signatures on modules, we can
abstract just on the types from these modules (which
are all we really need to refer to anyway):

I1 = [T1 :: Type, £ : ...]

I2 = AT1::Type. [T2 :: Type, £ : ...T1...]
I3 = AT2::Type. [T :: Type, £ : ...T2...]
I4 = AT3::Type. [T :: Type, £ : ...T3...]

Parameterization over types

Much better: no quadratic growth of header
iInformation!

But: still suffers from “anticipatory parameterization”

Effectively, this style amounts to performing “phase
separation” manually.

Bottom line

Coherence requirements are fundamentally equations
between types (or structures)

Two ways to handle them:
¢ Deal with them directly in the type theory of the
language (sharing by specification).

Elaborator deals with this rich type theory by
compiling it down to something simpler.

¢ Make the language simpler by shifting the work of
elaboration to the programmer (sharing by
parameterization on types).

Conclusions

¢
¢

Generic inter-module references are a key design
choice.

Industrial languages get along without them by
using search path hacks, objects, etc., but lose
expressiveness that matters in some real examples.

Allowing them raises the issue of coherence.

Coherence can be dealt with either “automatically”
(sharing by specification) or “manually” (sharing by
parameterization on types).

Parameterization on modules does not scale.

