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Variants

A tagged union (also called variant, disjoint union, sum type, or
algebraic data type) holds a value which may be one of several types,
but only one at a time.

This is very similar to the logical disjunction, in intuitionistic logic (by
the Curry-Howard correspondance).
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AW N =

w N =

Variants are very convenient to represent data structures, and
implement algorithms on these :

datatype tree = Leaf
| Node of (int % tree * tree)

Node(5, Node(l,Leaf,Leaf), Node(3, Leaf, Node(4, Leaf, Leaf)))

(5)
@ ©®
@

fun countNodes(Leaf) =0
| countNodes(Node(int,left ,right)) =
1 + countNodes(left) 4+ countNodes(right)
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1| type basic color =

2| | Black | Red | Green | Yellow

3| | Blue | Magenta | Cyan | White

4| type weight = Regular | Bold

5| type color =

6| | Basic of basic color * weight

71 | RGB of int % int x int

g| | Gray of int

9

1| let color to int = function

2| | Basic (basic_color,weight) —>

3 let base = match weight with Bold —> 8 | Regular —=> 0 in
4 base 4+ basic color to int basic color
5| | RGB (r,g,b) => 16 + b + g % 6 + r * 36
6| | Gray i —> 232 + |

7

6 of 113 ﬁ /\mn IE



The limit of variants

Say we want to handle a color representation with an alpha channel,
but just for color_to_int (this implies we do not want to redefine
our color type, this would be a hassle elsewhere).

1| type extended color =

2 | Basic of basic_color % weight

3 | RGB of int % int x int

4 | Gray of int

5 | RGBA of int % int * int % int

6

7| let extended color to int = function

8 | RGBA (r,g,b,a) —=> 256 + 2 + b x 6 + g * 36 + r * 216
9 | (Basic _ | RGB _ | Gray ) as color —> color to_int color
10| (+ Characters 154—159:

11 Error: This expression has type extended color

12 but an expression was expected of type color =)

13
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Polymorphic variants

Polymorphic variants are more flexible and syntactically more
lightweight than ordinary variants, but that extra power comes at a
cost.

Syntactically, polymorphic variants are distinguished from ordinary
variants by the leading backtick. And unlike ordinary variants,
polymorphic variants can be used without an explicit type declaration :

1| let three = ‘Int 3

2| (+ val three : [> ‘Int of int ] = 'Int 3 x)

3

aflet i = ['On; 'Off]

5/ (x val i : [> "Off | 'On ] list = [‘On; "Off] x)
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[< and [>

The > at the beginning of the variant types is critical because it marks
the types as being open to combination with other variant types. We
can read the type [> ‘On | ‘Off ] as describing a variant whose
tags include ‘On and ‘0ff, but may include more tags as well. In other
words, you can roughly translate > to mean : "these tags or more."

‘Unknown :: i

(x —: [> "Off | 'On | ‘Unknown ] list =['Unknown; ‘On; ‘Off]x)

let f = function ‘A | ‘B —=> ()
(x val f : [< 'A | 'B ] —> unit = <fun> x)

let g = function ‘A | ‘B | —> ()
(« val f : [> 'A | 'B ] —> unit = <fun> x)

W N oA WN R
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Extending types

1| let f = function ‘A —> ‘C | 'B—> 'D | x —> x

2| (% val f : ([> ‘A ] ‘B | 'C| 'D] as 'a) —> 'a = <fun> )
3

4l f 'E

5| (+ — : [> ‘A ] '‘B| ‘C| '‘D| 'E] = "E %)

6

7| f

8| (x val f : ([> ‘A | ‘B | 'C| 'D] as 'a) = 'a = <fun> )
9
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Abbreviations

Beware of the similarity :

1| type ab = A | B

3l type ab = [ ‘A | ‘B ]

1| let f (x:ab) = match x with v —> v

2| (x val f : ab —> ab = <fun> x)

3

af £ A

5/ (+ — : ab = ‘A x)

6

71t C

8| (+ Error: This expression has type [> ‘C ]

9 but an expression was expected of type ab

10 The second variant type does not allow tag(s) ‘C x)
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Abbreviations

Useful shorthand :

1| let f = function ‘C —> 1 | #ab —> 0

2| (x val f : [< ‘A | 'B | 'C] —> int = <fun> %)

3

af £ A

5| (% — int =0 )

6

7 ‘'C

gl (x+ — @ int =1 %)

9

0| f ‘D

11| (% Error: This expression has type [> ‘D ]

12 but an expression was expected of type [< ‘A | ‘B | ‘C ]
13 The second variant type does not allow tag(s) ‘D x)
14
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The solution to our color problem

1| let extended color to int = function

2 | ‘RGBA (r,g,b,a) =—> 256 + a + b x 6 + g * 36 + r = 216

3 | ('Basic | ‘RGB | ‘Gray ) as color —> color to_ int
color

4

5/ (*+ val extended color to int

6/ [< 'Basic of

7 [< ‘Black

8 | ‘Blue

9 | ‘Cyan

10 | “Green

11 | ‘Magenta

12 | ‘Red

13 | “White

14 | ‘Yellow ] =

15 [< 'Bold | ‘Regular ]

16 | ‘Gray of int

17 | 'RGB of int * int =% int

18 | ‘RGBA of int x int % int % int ] —>

19 int = <fun> x)
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Subtype polymorphism

In programming language theory, subtyping (also subtype
polymorphism or inclusion polymorphism) is a form of type
polymorphism in which a subtype is a datatype that is related to
another datatype (the supertype) by some notion of substitutability,
meaning that program elements, typically subroutines or functions,
written to operate on elements of the supertype can also operate on
elements of the subtype.
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Subtypes

toString
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Subtype polymorphism (ctd.)

In object-oriented programming the term ‘polymorphism’ is commonly
used to refer solely to this subtype polymorphism, while the techniques
of parametric polymorphism would be considered generic
programming.

In the branch of mathematical logic known as type theory, System
F< ., pronounced "F-sub", is an extension of system F with subtyping.
System F. . has been of central importance to programming language
theory since the 1980s because the core of functional programming
languages, like those in the ML family, support both parametric
polymorphism and record subtyping, which can be expressed in System
Fe..

18 of 113 n f\mn |E=



Example : in Object Oriented Programming

1| type farm = quadrupede list
2
3 let i : farm = new cat :: new dog :: []
4| (x Error: This expression has type cat but an expression was
expected of type quadrupede x)
Unlike other languages, cat and dog being both derived from the
quadrupede class isn't enough to treat them both as quadrupedes.
One must use an explicit coercion :
1f let x :> quadrupede = new cat
2| (x val x : quadrupede = <obj> x)
3
4| let |i : farm = (new cat :> quadrupede) :: (new dog :>
quadrupede) :: [] in
5 List.iter (fun ¢ => print endline (cffspecies())) i
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Coercion on variants

illet f x=(x [ ‘A1 :> [ ‘Al ‘B

2| (« val f [ 'A] > ‘A | 'B] =<fun> x)

3

af fun x —> (x > ['A|'B]'C])

5| (+ — [ A 'B| 'C]—>1["'A] 'B|] 'CJ]=<fun> %)
On tuples :

llet f x=(x: [ A]l=*x[ 'B]l:>['A] C]=x[''B]|] ‘D]
2(*Va|;‘i[‘A]*[‘B]—>[‘A|‘C]*[‘B\‘D]=<fun
> %

On arrow types :

tflet f x=(x: [ ‘A] ‘B]—=>1
2| (% val f : ([ 'A ] 'B] —> 1 'C]
<fun> x)

20 of 113 ﬁ /\mn IES

|| —
~




Variance : covariance and contravariance

..
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Variance annotations : +a and -a

A somewhat obscure corner of the language.

For types in OCaml like tuple and arrow, one can use + and -, called
"variance annotations", to state the essence of the subtyping rule for
the type — namely the direction of subtyping needed on the
component types in order to deduce subtyping on the compound type.

1| type (+'2, +'b) t = "2 % 'b

2| (x type ('a, 'b) t = "a x 'b x)

3

4l type (+'2, +'b) t = "'a => 'b

5/ (x Error: In this definition , expected parameter variances are

6 not satisfied. The 1st type parameter was expected

7 to be covariant, but it is injective contravariant.
*)

8

ol type (='a, +'b) = 'a => 'b

10| (x type ('a, 'b) t = "a —> 'b x)
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Variance annotations : +a and -a (ctd.)

1| module M : sig

2 type ('a, 'b) t

3lend = struct

4 type ('a, 'b) t = "a x 'b

5| end

6

71let © x=(x: ([ ‘A1, [ 'B]) Mt

: L A e ) )

9| (+ Error: pe ([ ‘A ], [ '‘B]) Mt is not a subtype of
10 ([A|c1[B D) M

11 The first variant type does not allow tag(s) ‘C x)
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Variance annotations : +a and -a (ctd.)

1| module M : sig

2 type (+'a, +'b) ¢

3lend = struct

4 type ('a, 'b) t = "a x 'b

5| end

6

7l let © x=(x ([ ‘A1, [ 'B]) Mt

s > (LA CT T B D) M)
ol (+ Ok x)
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Compilers

int data=17;
int result ;

int square (void ) ;
int main (void)
result = square () ;

return (result) ;
} modern
compiler
foo.c implementation
in ML

int final ;
extern int data ;

int square (void )
final = data * data ;
return (final) ;

bar.c
andrew w. appel
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The OCaml toolchain

Source code Lambda
| / \
| parsing and preprocessing / \ closure conversion,
| / \ inlining, uncurrying,
| camlp4 syntax extensions v \ data representation
| Bytecode \ strategy
v | o+
Parsetree (untyped AST) | Cmm
| |ocamlrun |
| type inference and checking | | code generation
v | | assembly and
Typedtree (type-annotated AST) | | linking
| v v
| pattern-matching compilation Interpreted Compiled
| elimination of modules and classes
v
Lambda
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Value representation

In a running OCaml program, a value is either an "integer-like thing"
or a pointer to a block.

Stored as integers (1 word) : Stored as blocks :

e integers o lists

e characters e tuples

* (). ] e arrays, strings

e true, false e structs

e variants with no parameters e variants with parameters
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1 let (%) x vy =y x
2 (x val (%) : '"a—> ('a—> 'b) > 'b = <fun> x)
3 Obj.repr 42
4 (* — : Obj.t = <abstr> x)
1| Obj.repr 42 % Obj.is int 1| type t = Foo
2| (x — : bool = true =x) 2 | Bar of int
3| Obj.repr 42 % Obj.is block 3 | Baz
4| (x — : bool = false x) 4 | Qux
5 5
6| Obj.repr [] % Obj.is int 6| Obj.repr Foo % Obj.is int
71 (x — : bool = true =x) 7| (x — : bool = true x)
g| Obj.repr [42] % Obj.is int 8| Obj.repr (Bar 42) % Obj.is int
9| (x — : bool = false x) 9| (x — : bool = false x)
10
11| Printf.printf "%d %d %d"
12 (Obj.magic Foo)
The Obj module : operations on ~ **|  (Obi.macic Baz)
. K 14 (Obj.magic Qux)
internal representations of values. 5 (* 0 12— : unit = () *)
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The LSB (least significant byte)

Pointers are always aligned on 1 word, i.e. 4 bytes (32 bits) or 8 bytes
(64 bits). Thus, their 2 (32 bits) or 3 (64 bits) least significant bits are

always null.
e Footo— ot
| pointer | 01 0|
oo . Footo—t
e S
| integer (31 or 63 bits) |11
e S
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How do integer arithmetics work with this LSB?

[V
[
+
o’
[
1]
)
+
o’
S

To perform an addition :

1 addition
2 lea —1(%eax, %ebx), %eax
2 xa+1 3
4 subtraction
t2xb+1 5 subl %ebx , %eax
=2x*x (a+b) +2 6 incl Y%eax
7
8 multiplication
0,
So just add the two, . Zi! ;ﬁ;xﬁebx
then subtract 1. 11 imull %ebx , Y%eax
12 incl %eax
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Block values

O A O o - - - -
| header | word[0] | word[1] |
. A O o - - - -
I
pointer

In a block (array, list, etc.) of (integers | block values), each word is
(an integer | a pointer to a block value).
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Block values header

Fommmmm - Fommmmmm Fommmmoooo S +
| size of the block in words | col | tag byte |
Fommmmm o Fommmmmm Hommmmmmoo N +

<-- 22 bits (i686) or 54 bits (x86_64) ---><- 2b-><--- 8 bits --->

e Size : 22 bits = maximum size of 222 words (16 MBytes).

e Color : Used by the garbage collector (GC).

e Tag:
o € [0;250] : Block contains values which the GC should scan :
e Arrays;
e Objects;
o € [251;255] : Block contains values which the GC should not scan :
e Strings;
o Doubles.
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The tag byte

1| Obj.tag (Obj.repr "foo') 1| Obj.tag

2| (x — : int = 252 x) 2 (Obj.repr [| 1.0; 2.0 |])
3 3 (« — @ int = 254 x)

4| Obj.tag (Obj.repr 1.0) 4

5/ (« — @ int = 253 ) 5| Obj.double field

6 6 (Obj.repr [| 1.1; 2.2 |]) 1
71 Obj.double tag 7| (x — : float = 2.2 %)

gl (x — : int = 253 x) 8

9 9| Obj.double field

10/ Obj.is block (Obj.repr 1.0) Lo (Obj.repr 1.234) 0

11| (* — : bool = true x) tif (x — @ float = 1.234 x)

12 12
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Variants with parameters

Stored as blocks, with the value tags ascending from 0. Due to this
encoding, there is a limit around 240 variants (with parameters).

type t = Apple | Orange of int | Pear of string | Kiwi

Obj.tag (Obj.repr (Orange 1234))
(x — : int =0 =)

Obj.tag (Obj.repr (Pear "xyz"))
(* — @ int = 1x%)

© 0 N O OB WN

(Obj.magic (Obj.field (Obj.repr (Orange 1234)) 0) : int)
(x — @ int = 1234 x)

OB e
N B O

(Obj.magic (Obj.field (Obj.repr (Pear "xyz")) 0) : string)
(* — @ string = "xyz" x)

[
w

36 of 113 ] Ami |Es



C string handling

1 Obj.size (Obj.repr "1234567") (% 7 chars =x)

2 (* — @ int = 2 x)

3 Obj.size (Obj.repr "123456789abc") (% 12 chars x)
4 (x — : int = 4 x)

strlen = number_of_words_in_block * sizeof (word)
+ last_byte_of_block - 1

B o +

| 31 32 33 34 | 35 36 37 00 | (i686)

B o +

. o +

| 31 32 3334 ... | 39 61 62 63 00 00 00 03 | (X86_64)
. e +
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C string handling (ctd.)

String length mod 4 Padding
0 00 00 00 03
1 00 00 02
2 00 01
3 00
Note : on 64bits, the padding goes down from 00 00 ... 07.
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Polymorphic variants

A polymorphic variant without any parameters is stored as an
unboxed integer and so only takes up one word of memory, just like
a normal variant. This integer value is determined by applying a hash
function to the name of the variant.

Pa type conv.hash variant "Foo"

(* — : int = 3505894 x)

(Obj.magic (Obj.repr ‘Foo) : int)
(* — : int = 3505894 x)

o s W N
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Allocations : obvious and hidden

let f x =
2 let tmp = 42 in (% stuff x)

[

Ocamlopt creates a new tuple :

-

let f (a2, b) =
(2, b)

N

To avoid this, tell ocamlopt to use the same value :

-

let f (x @ ('a * 'b)) =

X

N
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The two heaps

A typical functional programming style means that young blocks tend
to die young and old blocks tend to stay around for longer than young
ones. This is often referred to as the generational hypothesis.

OCaml’'s memory model is optimized for this usage.

Two heaps :
e the minor (young) heap;
e the major heap.
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The minor heap

Allocation is done in the minor heap, which holds 32 K-words
(128KBytes on 32 bits, 256KBytes on 64 bits).

<---m- allocation proceeds in this direction

- +

| unallocated |///allocated part///|

- +
I I

caml_young_limit caml_young_ptr
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The minor collection

When the minor heap runs out, it triggers a minor collection.

e All local roots (i.e. pointers in variables of the current environment)
have their target, in the minor heap, moved over to the major
heap;

e Everything left in the minor heap is data which is now unreachable,
so the minor heap is once again considered empty;

e This is a Stop&Copy garbage collection.

44 of 113 ﬁ /\mn |EE



The major heap

The major heap is a a large chunk of memory :

* Allocated by malloc(2);

e It does not run out;

e |t does not expire.

Because the garbage collector must not meddle with ressources
allocated outside it's own heap (e.g. allocated by C code), it keeps a
page table up to date. Any pointer which points outside those pages
is considered opaque, and ignored. Any block whose tag byte is
above 250 is also considered opaque.
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The major collection

It's a simple tri-color marking, for 'on-the-fly’ operation. This is known
as Mark&Sweep garbage collection.

Crew
k‘ jsweep

white

barrier back

push sweep

pop
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Garbage collection : mutables

{ tt : int }

{ mutable x : t }

type t =

type a2 =

let m={ x={ tt =42 }};

(* minor collection happens : 'm' and its child moves to major
heap x)

let n={ tt =43 } in m.x <—n

(* minor collection happens : 'n' should be collected, because
there is no local root in the minor heap; but it musn't
because it is refered by the major heap x)

© 0 N O s WN

o
= O

Because OCaml is not a purely functional language, it allows mutable
contents :

e An old struct can contain a pointer to a newer struct;

* The refs list (remembered set) keeps track of these.
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-
The Gc module

Memory management control and statistics.

Gec. minor ()

(x+ — : unit = () =)
Gc.compact()

(x+ — : unit = () =)

AW N =

1| Ge.stat ()

2| (¢ — : Ge.stat =

3| {Gc. minor _words=555758; Gc.promoted words=61651; Gc.

major words=205646;

4 Gc.minor collections=18; Gc.major collections=4; Gc.

heap words=190464;

5| Gc.heap chunks=3; Gc.live words=130637; Gc.live blocks=30770;
6| Gc.free words=59827; Gc.free blocks=1; Gc.largest free=59827;
7| Gec.fragments=0; Gc.compactions=1} x)
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The Gc module (2)

1| let ¢ = Ge.get ()

2| (* val ¢ : Gec.control =

3]  {Gc.minor heap size = 262144; Gc.major heap increment = 126976;
4 Gc.space overhead = 80; Gc.verbose = 0; Gc.max_overhead = 500;
5 Gc.stack limit = 1048576; Gc.allocation policy = 0} x)

6

7l c.Gec.verbose <— 255;

8| Gc.set c;

9| Gc.compact

| (x — : unit = () *)

11

12| (* <>Starting new major GC cycle

13 allocated words = 329

14 extra _heap memory = Ou

15 amount of work to do = 3285u

16 Marking 1274 words

17 I'Starting new major GC cycle

18 Compacting heap ...

19 done. x)
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Syntax trees : a simple example

[

type t = Foo | Bar
2| let v = Foo
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The untyped syntax tree

$ ocamlc -dparsetree typedef.ml 2>&1
L
structure_item (typedef.ml[1,0+0]..[1,0+18])
Pstr_type
L
"t" (typedef.ml[1,0+5]..[1,0+6])
type_declaration (typedef.ml[1,0+5]..[1,0+18])
ptype_params =
(]
ptype_cstrs =
(]
ptype_kind =
Ptype_variant

L
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The typed syntax tree

$ ocamlc -dtypedtree typedef.ml 2>&1
L
structure_item (typedef.ml[1,0+0]..typedef.ml1[1,0+18])
Pstr_type
L
t/1008
type_declaration (typedef.ml[1,0+5]..typedef.ml[1,0+:
ptype_params =
(]
ptype_cstrs =
(1
ptype_kind =
Ptype_variant

L
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The untyped lambda form

The first code generation phase eliminates all the static type
information into a simpler intermediate lambda form. The lambda
form discards higher-level constructs such as modules and objects and
replaces them with simpler values such as records and function
pointers. Pattern matches are also analyzed and compiled into highly
optimized automata.

The lambda form is the key stage that discards the OCaml type
information and maps the source code to the runtime memory model.
This stage also performs some optimizations, most notably converting
pattern-match statements into more optimized but low-level
statements.
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monomorphic_large.ml :

type t = | Alice | Bob | Charlie | David

let test v =
match v with
| Alice —> 100
| Bob —> 101
| Charlie = 102
| David —> 103

0 N O A WN

monomorphic_small.ml :

type t = | Alice | Bob

let test v =
match v with
| Alice —> 100
| Bob —> 101

o A W N
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$ ocamlc -dlambda -c pattern_monomorphic_large.ml 2>&1
(setglobal Pattern_monomorphic_large!
(let
(test/1013
(function v/1014
(switch* v/1014
case int 0: 100
case int 1: 101
case int 2: 102
case int 3: 103)))
(makeblock 0 test/1013)))
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$ ocamlc -dlambda -c pattern_monomorphic_small.ml 2>&1
(setglobal Pattern_monomorphic_small!
(let (test/1011 (function v/1012 (if (!= v/1012 0) 101 100
(makeblock 0 test/1011)))
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$ ocamlc -dlambda -c pattern_polymorphic.ml 2>&1
(setglobal Pattern_polymorphic!
(let
(test/1008
(function v/1009
(if (!'= v/1009 3306965)
(if (>= v/1009 482771474) (if (>= v/1009 88491702
(if (>= v/1009 3457716) 104 103))
101)))
(makeblock O test/1008)))
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Benchmarking pattern matching

$ corebuild -pkg core_bench bench_patterns.native
$ ./bench_patterns.native -ascii
Estimated testing time 30s (change using -quota SECS).

Name Time/Run % of max
Polymorphic pattern 104 100.00
Monomorphic larger pattern 95.28 91.29
Monomorphic small pattern 53.56 51.32
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The bytecode

$ ocamlc -dinstr pattern_monomorphic_small.ml 2>&1
branch L2
L1: acc O
push
const 0
neqint
branchifnot L3
const 101
return 1
L3: const 100
return 1
L2: closure L1, O
push
acc O
makeblock 1, O
pop 1
setglobal Pattern_monomorphic_small!
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Native code : monomorphic comparision

-

let cmp (a:int) (b:int) =
2 if a > b then a else b

$ ocamlopt -inline 20 -nodynlink -S compare_mono.ml

1| camlCompare _mono cmp 1008:
2 .cfi startproc

3| .L101:

4 cmpq Y%rbx, %rax
5 jle .L100

6 ret

7 .align 2

8| .L100:

9 movq Y%rbx , Y%rax
10 ret

11 .cfi_endproc
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Native code : polymorphic comparision

i let cmp a b =
2| if 2 > b then o else b

1| _camlCompare_poly__cmp_1008:

2 cfi_startproc

3 subgq $24, %rsp

4 cfi_adjust_cfa_offset 24
5[ .L101:

6 movq  %rax, 8(%rsp)

7 movq  %rbx, 0(%rsp)

8 movq Y%rax , %rdi

9 movq %rbx, %rsi

10 leaq caml_greaterthan(%rip), %rax
11 call caml_c_call

12 L1102

13 leaq caml_young_ptr(%rip), %rl
14 mova (%r11), %5

15 cmpg $1, %rax

16 je L100

17 mova 8(%rsp), %rax

18 addq $24, %rsp

19 cfi_adjust_cfa_offset —24
20 ret

21 cfi_adjust_cfa 24
2 .align 2

23| .L100:

2 movq 0(%rsp), %rax

25 addg $24, %rsp

26 cfi_adjust_cfa_offset —24
27 ret

28 cfi_adjust_cfa s 24
29 cfi_endproc
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Native code : comparisions benchmark

$ corebuild -pkg core_bench bench_poly_and_mono.native
$ ./bench_poly_and_mono.native -ascii
Estimated testing time 20s (change using -quota SECS).

Name Time/Run % of max
Polymorphic comparison 40_882 100.00
Monomorphic comparison 2_837 6.94

63 of 113 ﬁ /\mn |E=



Table of Contents

System F

Type inference

64 of 113 ﬁ Amn IEE



Hindley—Milner type system

A classical type system for the lambda calculus with parametric
polymorphism. Among the properties making HM so outstanding is
completeness and its ability to deduce the most general type of a
given program without the need of any type annotations.

lFe:o M x:oFe T
Let :

lFletx=¢ ine : 7T

Algorithm W is a fast algorithm, performing type inference in almost
linear time with respect to the size of the source, making it practically
usable to type large programs.
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Typing rules

Generalization : - letid = Ax.x in id : Va.ao = «

1 x:aFx:a [Var]
2 Flxx:a—a« [Abs]
3: FXxx:Vaa—a [Gen]
4: jd:Vo.oo = atid:Vo.a — «a [Var]
5: Fletid =X xxinid : YVa.a — « [Let]

(x:ae{x:a})

(1)

(2), (o ¢ free(e))

(id : Yo.oo = a € {id : Va.a-

(3), (4)
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Typing rules

Generalization : - letid = Ax.x in id : Va.ao = «

1 x:aFx:a [Var]
2 Flxx:a—a« [Abs]
3: FXxx:Vaa—a [Gen]
4: jd:Vo.oo = atid:Vo.a — «a [Var]
5: Fletid =X xxinid : YVa.a — « [Let]

Are you still there ?

(x:ae{x:a})

(1)

(2), (o ¢ free(e))

(id : Yo.oo = a € {id : Va.a-

(3), (4)
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Traditional Algorithm W

Here is a trivial example of generalization :

1| fun x —>
2 let v = fun z —> 7z in vy
3[(x "a—> ('b —> 'b) x)

The type checker infers for fun z ->z the type 5 — [ with the fresh,
and hence unique, type variable 3. The expression fun z -> z is
syntactically a value, generalization proceeds, and y gets the type
VB.8 — 5.

Because of the polymorphic type, y may occur in differently typed
contexts (may be applied to arguments of different types), as in :

fun x —>
let v = fun z —> z in
(v 1, v true, y "caml")
(+ "a —> int % bool % string)
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ML graphic types

71 <17 <73

since
a<(y—=7)= (1)n < (1), (grafting)
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R ()
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70 of 113 ﬁ /\mn IEE



MLf

MLF graphic type Its skeleton Its binding tree

o O

c=V(@)V(@B=V)y—=NV00Za—a)B—4§

Figure 6. An example of MLF graphic type

71 of 113 ﬁ /\mn IES



Figure 3. Typing id 1
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Figure 16. Typing \(z) x
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MLf

x7 (6

O=0)

Figure 15. Typinglet y = A(z) zinyy
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Recursive types

OCaml accepts them in variants and structures :

1| type foo = Ctor of foo

2| (x type foo = | Ctor of foo x)

3

4| type bar t = { field : bar t }

5/ (« bar_t = { field : bar_t } %)

1| let rec fooval = Ctor fooval

2| (+ val fooval : foo =

3 Ctor

4 (Ctor

5 (Ctor

6 *)

7

g| let rec bar = { field = baz } and baz = { field = bar }
9| (* val bar : bar t = {field={field={field=...}}} x)
10| (* val baz : bar_t = {field={field={field=...3}} *)
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Recursive types

But there are limitations :

1 '

il type 'a tree = 'a x 'a tree list

2| (x Error: The type abbreviation tree is cyclic x*)

3

4| let rec f = function

5 =0

6 | o, oxs > oxs

7| (x Error: This expression has type 'a list but is here used
8

with type ('b % 'a list) list =x)

Even though the object extensions do work recursively :

1| let rec f o = match of#xs with

2 [l —>0

3 | xs —> f xs

4 (x val height : (< xs : 'a list; .. > as 'a) —> unit = <fun>
*)
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Black magic

Use OCaml compiler option -rectypes. The previous function
becomes :

1 (« f @ (b x "a list as 'a) —> unit = <fun> )

You can also do some magic with the as keyword :

type 'a tree = ('a x 'vertex list) as
(x type 'a tree = 'a x 'a tree list =x)

-

"vertex

N
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Weak types
Type defaulting :
1| let x = ref []
2| (+ val x : ' a list ref = {contents = []} =)
3
4l x = 42 :: Ix
5[ (x — @ unit = () x)
6
7| %
8| (« — : int list ref = {contents = [42]} =)
9
0% = Ta' i Ix
11| (x Error: This expression has type char but
12 an expression was expected of type int *)

This is called the value restriction, or monomorphism restriction. It
prevents breaking type safety with references.
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Value restriction

A rule that governs when type inference is allowed to polymorphically
generalize a value declaration : only if the right-hand side of an
expression is syntactically a value.

val f
2| val

-

fn x = x
(f "foo"; f 13)

The expression fn x => x is syntactically a value, so f has
polymorphic type a -> ’a and both calls to £ type check.

let in fn x => x end
(f "foo"; f 13)

val f
2| val

-

The expression 1let in fn x => end end is not syntactically a value

and so the program fails to type check.
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Value restriction (ctd.)

The Definition of Standard ML spells out precisely which expressions
are syntactic values (it refers to such expressions as non-expansive).
An expression is a value if it is of one of the following forms :

* a constant (13, "foo", 13.0, ...)

a variable (x, y, ...)

a function (fn x => e)

the application of a constructor other than ref to a value (Foo v)

* a type constrained value (v : t)

a tuple in which each field is a value (v1, v2, ...)

a record in which each field is a value {I1 = v1, 12 =v2, ...}

a list in which each element is a value [v1, v2, ...]
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\ calculus

The meaning of lambda expressions is defined by how expressions can
be reduced.
There are three kinds of reduction :

e a-conversion : changing bound variables (alpha);
e [-reduction : applying functions to their arguments (beta);
e pn-conversion : which captures a notion of extensionality (eta).

We also speak of the resulting equivalences : two expressions are
[B-equivalent, if they can be 3-converted into the same expression, and
a/ -equivalence are defined similarly.
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Weak polymorphism and 7 conversions

7 reduction :
1l let f x =g x
2l let f =g
7 expansion :
1| let map id = List.map (function x —> x)
2| (x val map_id : " a list —> ' a list = <fun> x)
3|lmap id [1;2]
4/ map_id
5| (« — @ int list —> int list = <fun> x)
6
7| let map id eta = List.map (function x —> x) eta
8| (* val map_id : 'a list —> "a list = <fun> x)
ol map id [1;2]
10| map id
1| (x — : 'a list —> 'a list = <fun> x)
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Variance and the relaxed value restriction

module M : sig

type 'a t

val embed : "a —> 'a t
end = struct

type 'a t = 'a

let embed x = x
end

© 0N AE WN

M.embed []
(* — ¢ " _a list M.t = <abstr> %)

=
o
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Variance and the relaxed value restriction (ctd.)

With a +'a in the type signature, the embedded empty list is
generalized :

module M : sig

type +'a t

val embed : 'a —> 'a t
end = struct

type 'a t = 'a

let embed x = x
end

© 0 N O O~ WN =

M.embed []
(« — : 'a list M.t = <abstr> x)

=
o
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Question : How does one build a function with type o — 37
Answer 1 :

[

let rec f x = f x
(x val f : "a —> 'b = <fun> )x

N
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Question : How does one build a function with type o — 37
Answer 1 :

let rec f x = f x
(x val f : "a —> 'b = <fun> )x

N R

Answer 2 :

-

fun —> failwith "
(x« — : 'a—> b =<fun> %)

N
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Question : How does one build a function with type o — 37
Answer 1 :

let rec f x = f x
(x val f : "a —> 'b =<fun> )x

N =

Answer 2 :
1| fun —> failwith "
2[(+ — ¢ 'a > 'b = <fun> %)

Answer 3 : Answers 1 and 2 are fallacious, this type is aberrant. We
will now see why.
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Declarative programming

It can be described as :

e A program that describes what computation should be performed
and not how to compute it;

e Any programming language that lacks side effects;

e A language with a clear correspondence to mathematical logic.

N
AN

4
T'M NOT LAZY I JUST ACT ~= /Fé\
BY NEED...
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Why is it cool 7

strict (eager) versus non-sritct (lazy) evaluation
o OCaml module Lazy.

e Typed lambda-calculus is safe;
High-level programming is abstract, simple;

Purely functional is easy to handle for the compiler;
o variable life;

o optimization;

o thread-safety, etc.
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1D Haar Discrete Wavelet Transform (DWT 1D)

Definition : y[n] = (x x g)[n] = :i: x[klg[n — k].
Implementation : -

e 28.540 lines of C;

e or

1| let haar | =

2 let rec aux | s d = match |, s, d with

3 [s], [1, d => s :: d

4 | [l s, d—=>aux s [] d

5 | hl1 :: h2 :: t, s, d—=> aux t (hl + h2 :: s) (hl — h2 ::
0)

6 | —> invalid arg "haar" in aux [ [] []

7| (+ val haar : int list —> int list = <fun> x)

8
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Combinators

Introduced by Moses Schonfinkel and Haskell Curry, a combinator is a
higher-order function that uses only function application and earlier
defined combinators to define a result from its arguments.

o Sxyz = xz(yz)

e Kxy =x

® X=X
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The B, C, K, W system forms 4 axioms of sentential logic :

e B=S(KS)K functional composition

e C=S5(S(K(S(KS)K))S)(KK) swap two arguments

o W = SS(SK) self-duplication
. T

H{—=p—p) —~ (pv -p) = (~pv ——pl

{((==p = p) ~ (pv =p)) = (=pv ~=p) —opvieop -

Vilm—p = pl—(pv -p)

{==p—p—ipv-p)

(==p—=prvii=-p—pt—=ipv-p)
= (=pv —p

—=pvi-—p—p (==p—pl—(pv-pm
—op—p —pv oop

py-op P

-p
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The B combinator

It's name is a reference to the Barbara Syllogism

AAA-1  Modus Barbara

Jx: Mx A Px MaP AllMare P,
A Ax: SxAMx SaM and all S are M;
= Jx: SxAPx SaP thus all S are P.
SaM MaP

SaP

96 of 113




The X combinator

There are one-point bases from which every combinator can be
composed extensionally equal to any lambda term. The simplest
example of such a basis is {X} where :

X = Xx.((xS)K)
It is not difficult to verify that :

X(X(XX)) =" K and X(X(X(XX))) =" S
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The Curry-Howard correspondence

In programming language theory and proof theory, the Curry—Howard
correspondence is the direct relationship between computer programs
and mathematical proofs. It is a generalization of a syntactic analogy
between systems of formal logic and computational calculi that was
first discovered by the American mathematician Haskell Curry and
logician William Alvin Howard.
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The Curry-Howard correspondence

In other words, the Curry—Howard correspondence is the observation
that two families of formalisms which had seemed unrelated—namely,
the proof systems on one hand, and the models of computation on the
other—were, in the two examples considered by Curry and Howard, in
fact structurally the same kind of objects.

A proof is a program, the formula it proves is a type for the program.
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The Curry-Howard correspondence

More informally, this can be seen as an analogy that states that the
return type of a function (i.e., the type of values returned by a
function) is analogous to a logical theorem, subject to hypotheses
corresponding to the types of the argument values passed to the
function; and that the program to compute that function is analogous
to a proof of that theorem. This sets a form of logic programming on
a rigorous foundation : proofs can be represented as programs, and
especially as lambda terms, or proofs can be run.

Such typed lambda calculi derived from the Curry—Howard paradigm
led to software like Coq in which proofs seen as programs can be
formalized, checked, and run.
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The Curry-Howard correspondence

Logic side Programming side
implication function type
conjuction product type
disjunction sum type
true formula unit type
false formula bottom type
assumption variable
axioms combinators
modus ponens application
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The Curry-Howard correspondence

If one restricts to the implicational intuitionistic fragment, a simple
way to formalize logic in Hilbert's style is as follows. Let ' be a finite
collection of formulas, considered as hypotheses. We say that § is
derivable from I, and we write I - ¢, in the following cases :

0 is an hypothesis, i.e. it is a formula of T,

e § is an instance of an axiom scheme; i.e., under the most common
axiom system :

d has the form a — (8 — «), or
d has the form (a — (8 — 7)) = ((« = B) = (@ = 7)),

0 follows by deduction, i.e., for some «, both o« — ¢ and « are
already derivable from I (this is the rule of modus ponens)
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The Curry-Howard correspondence

The fact that the combinator X constitutes a one-point basis of
(extensional) combinatory logic implies that the single axiom scheme

(((a=(B =)= {(a=p) = (a=7) = (6= (e—=0) =
) —¢

which is the principal type of X, is an adequate replacement to the
combination of the axiom schemes

a— (8 — a)
and

(@ = (6 =7)) = (e = B) = (e = 7)),
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The Y combinator

The fixpoint combinator is a higher-order function that computes a
fixed point of other functions : this is how recursion is implemented.

Y = M. (Ax.f(xx))(Ax.f(xx))
Y = SSK(S(K(S5(5(S5K))))K)

For call-by-value languages, an 1 expansion is necessary, resulting in
the Z combinator :

Z = M ((Ax.F(Ay.(xx)y))(Ax.fF(Ay.(xx)y)))
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Recursion in OCaml

1| let facto f = function

2 0—>1

3 | x => x % f (x = 1)

4| (+ val facto : (int —> int) —> int —> int = <fun> x)

5

6| let rec fix f x = f (fix f) x

7| (+ val fix @ (('a —=> 'b) —=> "a —> 'b) —> 'a —> 'b = <fun> x)
8

9| (fix facto) 5

10| (x — : int = 120 )

illet fix f =

2 (fun x —> f (x x))

3 (fun x =  (x x))

4l (x val fix : ('a —=> 'a) —> 'a = <fun> x)

5

6| fix facto

7| (+ Stack overflow during evaluation (looping recursion?). x)
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Recursion in OCaml (2)

An 7 expansion is necessary to evaluate it :

let fix f =
(fun x e => f (x x) e)
(fun x e —> f (x x) e)
(x val fix : (('a—=> 'b) => 'a => 'b) —> 'a —> 'b = <fun> x)

B W N =

Type ’a is an isomorphic type, supported by typing System F,.
OCaml needs option -rectypes to compile this.
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Recursion in OCaml (3)

Using polymorphic variants instead of rectypes :

let fix f =
(fun ("X x) = f(x ("X x)))
('X(fl;'; (X)) vy = (e (X %))
y

AW N =

The fixpoint combinator can of course be used as a \ :

il (fun f —

2 (fun x e = f (x x) e)

3 (fun x e —=> f (x x) €))

4 (fun f —>

5 (function 0 —> 1

6 | x => x x f (x = 1)))

7| (x — : int —> int = <fun> x)
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| fucking love C++

1| typedef void (xf0)();

2| typedef void (xf)(f0);

3

4l int main ()

5

o0

7 {

8 x((fO)x);

0 POCOCo )

10 {

1 (1)) ()

12 ;

13| }

14

15| std :: remove if(std:: find if(list.begin(), list.end(),
16 [1(t element ) —> bool
17 { return (EMPTY = e.pred; )}),
18 list.end(),

19 [1(t element e) —> bool

20 { return (0 > e.value; )3});
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Quines

A quine is a computer program which takes no input and produces a
copy of its own source code as its only output.

Doesn't the OCaml fixpoint look very much like a quine?

[

(fun s => Printf.printf "%s%S", s s) "(fun s —> Printf.printf
\"%s%S\", s s)"
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1| (+ Mc Carthy’'s angelic nondeterministic choice operator: x*)
2| if (amb [(fun —> false); (fun —> true)]) then
3 7

4| else failwith "failure"

5| (+ equals 7 x)

il let numbers =

2 List.map (fun n —=> (fun () —> n))

3 [1;2;3;4;5]

4

s/ let pyth () =

6 let (a, b, ¢) =

7 let i = amb numbers

8 and j = amb numbers

9 and k = amb numbers in

10 if I x 1 4+ ] % | =k x k then
11 (i, 1, k)

12 else failwith "too bad"

13| in Printf.printf "%d %d %d\n" 2 b c
14

15| let = toplevel pyth

16| (x 3 4 5 x)
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That's it!
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